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Floating-Point 
Numbers 
Aren’t Real
Chuck Allison

FLOATING-POINT NUMBERS ARE NOT “REAL NUMBERS” in the mathemati-
cal sense, even though they are called real in some programming languages, 
such as Pascal and Fortran. Real numbers have infinite precision and are there-
fore continuous and nonlossy; floating-point numbers have limited precision, 
so they are finite, and they resemble “badly behaved” integers, because they’re 
not evenly spaced throughout their range.

To illustrate, assign 2147483647 (the largest signed 32-bit integer) to a 32-bit 
float variable (x, say), and print it. You’ll see 2147483648. Now print x-64. Still 
2147483648. Now print x-65, and you’ll get 2147483520! Why? Because the 
spacing between adjacent floats in that range is 128, and floating-point opera-
tions round to the nearest floating-point number.

IEEE floating-point numbers are fixed-precision numbers based on base-two 
scientific notation: 1.d1d2...dp 1 × 2e, where p is the precision (24 for float, 53 
for double). The spacing between two consecutive numbers is 21–p+e, which can 
be safely approximated by ε|x|, where ε is the machine epsilon (21–p).

Knowing the spacing in the neighborhood of a floating-point number can help 
you avoid classic numerical blunders. For example, if you’re performing an 
iterative calculation, such as searching for the root of an equation, there’s no 
sense in asking for greater precision than the number system can give in the 
neighborhood of the answer. Make sure that the tolerance you request is no 
smaller than the spacing there, otherwise you’ll loop forever.

Since floating-point numbers are approximations of real numbers, there is inevi-
tably a little error present. This error, called roundoff, can lead to surprising results. 
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When you subtract nearly equal numbers, for example, the most significant 
digits cancel one another out, so what was the least significant digit (where the 
roundoff error resides) gets promoted to the most significant position in the 
floating-point result, essentially contaminating any further related computa-
tions (a phenomenon known as smearing). You need to look closely at your 
algorithms to prevent such catastrophic cancellation. To illustrate, consider 
solving the equation x2 – 100000x + 1 = 0 with the quadratic formula. Since 
the operands in the expression –b + sqrt(b2 – 4) are nearly equal in magnitude, 
you can instead compute the root r1 = –b – sqrt(b2 – 4), and then obtain r2 = 1/r1, 
since for any quadratic equation, ax2 + bx + c = 0, the roots satisfy r1r2 = c/a.

Smearing can occur in even more subtle ways. Suppose a library naïvely com-
putes ex by the formula 1 + x + x2/2 + x3/3! + …. This works fine for positive x, but 
consider what happens when x is a large negative number. The even-powered 
terms result in large positive numbers, and subtracting the odd-powered mag-
nitudes will not even affect the result. The problem here is that the roundoff in 
the large, positive terms is in a digit position of much greater significance than 
the true answer. The answer diverges toward positive infinity! The solution 
here is also simple: for negative x, compute ex = 1/e|x|.

It should go without saying that you shouldn’t use floating-point numbers for 
financial applications—that’s what decimal classes in languages like Python 
and C# are for. Floating-point numbers are intended for efficient scientific 
computation. But efficiency is worthless without accuracy, so remember the 
source of rounding errors, and code accordingly!


